
INSTITUT FÜR INFORMATIK
Lehr- und Forschungseinheit für

Programmier- und Modellierungssprachen

Oettingenstraße 67, D–80538 München

Evaluating Complex Queries
against XML Streams
with Polynomial Combined Complexity

Dan Olteanu, Tim Furche, François Bry

Technical Report, Computer Science Institute, Munich, Germany
http://www.pms.informatik.uni-muenchen.de/publikationen
Forschungsbericht/Research Report PMS-FB-2003-15, (Revised January 2004) 2003

Evaluating Complex Queries

against XML Streams
with Polynomial Combined Complexity

Dan Olteanu, Tim Furche, and François Bry

Institute for Informatics, University of Munich
{olteanu,timfu,bry}@pms.ifi.lmu.de

Abstract. Querying XML streams is receiving much attention due to
its growing range of applications from traffic monitoring to routing of me-
dia streams. Existing approaches to querying XML streams consider re-
stricted query language fragments, in most cases with exponential worst-
case complexity in the size of the query. This paper gives correctness and
complexity results for a query evaluator against XML streams called
SPEX [8]. Its combined complexity is shown to be polynomial in the
size of the data and the query. Extensive experimental evaluation with
a prototype confirms the theoretical complexity results.

1 Introduction

Querying data streams is receiving an increasing attention due to emerging ap-
plications such as publish-subscribe systems, data monitoring applications like
sensor networks [6], financial or traffic monitoring [3], and routing of media
streams [10]. Such applications call for novel methods to evaluate complex queries
against data streams. Data streams are preferred over data stored in memory
for several reasons: (1) the data might be too large or volatile, or (2) a stan-
dard approach based on data parsing and storing might be too time consuming.
For some applications, such as publish-subscribe systems or news distribution,
streams of XML and semi-structured data are more appropriate than streams of
relational data, as XML gives rise to trees with recursive structure definition and
unbounded, yet finite depths. Recently, several approaches to querying streams
of XML have been proposed, e.g., [1, 2, 5]. These approaches are restricted to
rather weak query languages, but with efficient average-case complexity.

Contribution. This paper first reports on the query evaluator against XML
streams called SPEX [8] and gives for it correctness and complexity results.

The query language used in the following, called RPQ, extends the XPath
fragments for which streamed evaluations have been proposed, e.g., [1, 2, 5]. RPQ
provides the core concepts of existing query languages for XML and provides
support for the XPath axes child, descendant, following-sibling and their reverses
parent, ancestor, and preceding-sibling, path, tree, and DAG queries. Although
SPEX can process general DAG queries, this paper treats a restricted form of
DAG queries, called single-join DAG queries, that can be efficiently evaluated.

2

���

��� ��	�

�

(a) path

�

� ��

�

� �

(b) tree

��
�

�

�

��

���

(c) DAG

Fig. 1. RPQ Queries

A single-join DAG is a DAG composed of two single-join DAGs or tree queries
sharing at most one node. Many queries encountered in practice can be expressed
as single-join DAG queries.

The time and space complexities for RPQ query evaluation with SPEX are
shown to be polynomial in both the query and the stream size, and in fact near
the theoretical optimum [4] for in-memory evaluation of an XPath fragment
included in RPQ. Extensive experimental evaluation confirms the theoretical
results and demonstrates almost constant memory use in practical cases.

The remainder of this paper is organized as follows. Section 2 recalls the
stream data model and introduces RPQ. Section 3 presents the RPQ query
evaluation by means of SPEX networks, and their complexity analysis is shaped
in Section 4. Section 5 provides experimental results performed with a SPEX
prototype on various streams and queries. Section 6 concludes the paper.

2 Preliminaries

XML Streams. SPEX [8] is designed to evaluate queries against XML streams
conveying tree-shaped data with labels on nodes, where an a-node of the tree is
represented in the stream by a pair of opening and closing XML tags 〈a〉 and
〈/a〉 . For the sake of simplicity, only element nodes are supported.

Regular Path Queries (RPQ). For querying trees-shaped data, we use
an abstraction of the navigational features of XPath called RPQ. The basic
constructs of RPQ are binary relations. There are two base relations: the child
relation C associating a node to its children, and the next-sibling relation ≺
associating a node to its immediate next sibling. For each base relation an inverse
relation is defined, and for each base and inverse relation its transitive closure
is defined as well. The grammar for full RPQ is specified next:

RPQ ::= Identifier(Var) :- Expr.

Expr ::= Expr ∧ Expr | Expr ∨ Expr | (Expr) | Var Relation Var | Label (Var).

Relation ::= Base | Inverse | Base+ | Inverse+. Base ::= C | ≺ . Inverse ::= B | � .

A relation expression v r w associates two sets of nodes identified by the
source variable v and the sink variable w that stand in relation r. Additionally,

3

for each possible label there is a unary relation Label specifying the set of nodes
with that label, e.g., a(v) restricts the set of nodes identified by v to nodes with
label a. An RPQ query is an expression of the form Q(t) :- E where Q is an
arbitrary identifier for the query, t is a variable occurring in E and E is an atomic
expression such as vi C vj or a(vi) or built up from atomic expressions using
conjunctions or disjunctions. t is called the head variable, all other variables
occurring in E are body variables.

Inverse relations are not explicitly considered in the following, for rewriting
each expression v r w, where r is the inverse to a base relation r, to w r v
yields an equivalent RPQ without that inverse relation. The equivalent RPQ is
a single-join DAG query, where the variable v appears as sink of two expres-
sions. Previous work of the authors [9] describes more sophisticated rewritings
of queries with inverse relations yielding tree queries. Tree and single-join DAG
queries are introduced below.

A path query is a query Q(t) :- E where in E (1) the head is the only non-
source variable, (2) there is exactly one non-sink variable, (3) each variable occurs
at most once as source and at most once as sink variable, and (4) there is no
subset of atomic expressions such that source and sink of a conjunction of these
atomic expressions are the same variable. RPQ paths correspond to XPath path
expressions without predicates. Fig. 1(a) shows the path query Q(v2) :- v0 C+

v1 ∧ b(v1) ∧ v1 ≺+ v2 ∧ d(v2).

A tree query is a path query Q(t) :- E where the first restriction is dropped
and the third one is eased: each variable may occur in E at most once as sink but
might occur several times as source of expressions. Hence, a tree query allows
multi-source variables but no multi-sink variables. Tree queries correspond to
XPath expressions with structural predicates. Fig. 1(b) shows the tree query
Q(v1) :- v0 C+ v1 ∧ b(v1) ∧ v0 C v2 ∧ d(v2), where v0 is a multi-source
variable.

A DAG query is a general query Q(t) :- E. A single-join DAG is a tree
query where multi-sink variables are allowed and there are no two distinct paths
in E with the same source and sink variable. Therefore, two distinct paths in
E can share at most one variable. The single-join DAG query Q(v1) :- v0 C+

v1 ∧ b(v1) ∧ v2 C+ v1 ∧ d(v2), as depicted in Fig. 1(c), exemplifies a multi-sink
variable v1 occurring as sink in two relation expressions.

If only a source v0 and a sink vh variable from a subquery are of interest, such
an expression can be abbreviated to f(v0, vh), where f is an arbitrary identifier,
e.g., v0 C+ v1 ∧ b(v1) ∧ v1 ≺+ v2 ∧ d(v2) can be abbreviated to p(v0, v2).

The RPQ denotational semantics is given in the following by means of se-
mantic mappings R and S. Let n be the number of variables in an expression
E and Nodes the set of nodes from a tree T conveyed by an XML stream.
The set of all possible bindings for variables in E to nodes in Nodes, denoted
Bindings, is the set of n-tuples Nodesn, where each tuple contains one binding
for each variable in E. For a tuple t, t.vi is the binding of the i-th variable in
E. Given an expression E, the result of evaluating E against T is the subset
SJEK(β) of β = Bindings. From the result set, the bindings for the head variable

4

d

b

in

out

(a) P-net

in

out

db

cd−and

and

(b) T-net

out

d

in

b

cd−

(c) D-net

Fig. 2. Example of SPEX Networks

v can be obtained by a simple projection, as done by R: for a query Q(v) :- E,
RJQ(v) :- EK(Bindings) is the set of bindings of the head variable v to nodes in
Nodes such that E holds. A relation expression v r w retains only those tuples,
where the binding for w is in AJrK(v). The function A maps each node in Nodes
to the set of nodes in Nodes related to it under the relation r. The function L
specifies for each label s the set of nodes in Nodes with that label.

R : Query→ Bindings→ Nodes

RJQ(v) :- EK(β) = πv(SJEK(β))

S : Expression→ Bindings→ Bindings

SJE1 ∧ E2K(β) = SJE1K(β) ∩ SJE2K(β) = SJE1K(SJE2K(β)) = SJE2K(SJE1K(β))

SJE1 ∨ E2K(β) = SJE1K(β) ∪ SJE2K(β)

SJ(E)K(β) = SJEK(β)

SJv1 r v2K(β) = {t ∈ β | t.v2 ∈ AJrK(t.v1)}
SJs(v)K(β) = {t ∈ β | t.v ∈ LJsK}

Each RPQ expression is a filter applied to the current set of tuples containing
variable bindings. Disjunctions and conjunctions of RPQ expressions can be di-
rectly mapped to unions and intersections of their operands’ result. Conjunctions
can also be expressed as the sequential application of S to the operands.

SPEX Transducer Networks. A single-state deterministic pushdown trans-
ducer is a tuple (q,Σ, Γ, δ), where q is the only state, Σ the input and output
alphabet, Γ the stack alphabet, and the transition function δ is canonically ex-
tended to the configuration-based transition function `: Σ × Γ ∗ → Γ ∗ × Σ∗.
E.g., the transition (〈a〉, [s] | γ) ` (γ, 〈a〉[s]) reads: under the input symbol 〈a〉
and with [s] as the top of the stack |-separated from the rest of the stack γ, the
transducer outputs first the input symbol 〈a〉 followed by the top of the stack
[s] that is also popped from the stack.

Processing an XML stream with pushdown transducers corresponds to a
depth-first traversal of the (implicit) tree conveyed by the XML stream. Exploit-
ing the affinity between depth-first search and stack management, the transduc-

5

ers use their stacks for tracking the node depth in such trees. This way, RPQ
relations can be evaluated in a single pass.

A SPEX transducer network is a directed acyclic graph where nodes are push-
down transducers. An edge between two transducers in a network inforces that
an input tape of the sink transducer is an output tape of the source transducer.
An evaluation plan for an RPQ query is represented in SPEX as a transducer
network. Corresponding to the RPQ path, tree, and single-join DAG queries,
there are three kinds of SPEX (transducer) networks: P-nets for the evaluation
of path queries, T-nets for the evaluation of tree queries, and D-nets for the
evaluation of single-join DAG queries.

3 The SPEX Evaluator

The evaluation of RPQ queries against XML streams with SPEX consists in
two steps. First, an RPQ query is compiled into a SPEX transducer network.
Second, the network computes the answers to the RPQ query.

The compilation of a query is defined inductively on the query structure:
(1) Each RPQ relation is compiled into a pushdown transducer. (2) Each multi-
source variable induces a pair of transducers (and, cd-and), if the variable is the
source of conjuncted expressions, or (or,cd-or) for disjuncted expressions. These
special transducers delimit the subnetworks corresponding to the expressions
having that variable as source. (3) Each multi-sink variable induces a pair of
transducers (∩,cd-∩), if the variable is the sink of conjuncted expressions, or
(∪,cd-∪) for disjuncted expressions. (4) At the beginning of a network there is
a stream-delivering in transducer and (5) at its end an answer-delivering out
transducer. Fig. 2 shows networks for the RPQ queries of Fig. 1, where the head
transducers that compute bindings for the head variable are marked with square
boxes. Sections 3.1 through 3.4 detail the various transducers.

A network net for an expression f(v1, v2) processes the XML stream enhanced
by its transducer in with input bindings for v1 and returns progressively output
bindings for v2, provided the expression holds. In the network, each transducer
processes stepwise the received stream with input bindings and transmits it
enhanced with computed output bindings to its successor transducers.

A node binding consists of a node annotated with a so-called condition. An
annotation to a node is stored in the XML stream after the opening tag of that
node. The output bindings delivered by a network net that processes the stream
with some input bindings, contain the conditions of these input bindings.

The conditions are created by the in, and (or), and ∩ (∪) transducers. The in
transducer binds each non-sink variable to all nodes, by annotating each node
with (satisfied) conditions. In contrast, the RPQ semantics binds initially each
variable to all nodes. Each and (or) transducer tests whether each received input
binding satisfy the predicates represented by the subnetworks rooted at that and
(or) transducer. In this sense, these transducers create an output binding with a
new (satisfiable) condition, say [s], for each received input binding, and sends it
further to their successor subnetworks. The predicates are satisfied for that input

6

binding (hence [s] is satisfied), when [s] is received by a cd-and (cd-or) within
output bindings of each (at least one) subnetwork rooted at the corresponding
and (or) transducer. The ∩ (∪) transducer processes similarly to and (or).

We use in the following an abstraction of processing XML streams with a
SPEX net for a query Q(v2) in terms of a function outQ(v1)|v2 that returns the
bindings for v2 constructed by net, when input bindings for v1 are supplied. It
is shown that (1) there is a corresponding outQ(v1)|v2 function that is actually
implemented by net, and (2) there is an equality of outQ(v1)|v2 and RJQ(v2)K.

3.1 Processing RPQ Relations

For a base relation r, a transducer t(r) implements the function outr(v1)|v2 =
{v2|v1 r v2}. Speaking in terms of annotations with conditions, if t(r) receives
a node n annotated with [c] (hence a binding for v1), then (1) it removes that
annotation [c] of n and stores it, (2) it identifies each node n′ from the incoming
stream that stands in relation r with n (hence n′ is a binding for v2), and (3) it
annotates each such node n′ with [c]. E.g., the child transducer t(C) annotates
with [c] all nodes n′ that are children of n.

The equality of outr(v1)|v2 to RPQ semantics under bindings β follows by:

RJQ(v2) :- v1 r v2K(β) = πv2(SJv1 r v2K(β)) = outr(πv1(β))|v2 .

A condition [c], used to annotate nodes, follows immediately the opening
tags of nodes, e.g., 〈a〉[c]. Both, the opening tag 〈a〉 and the condition [c], repre-
sent a binding to that a-node. On the stacks of transducers and on the stream,
conditions are expressed using (list of) integers, e.g., [1,2]. The operation [c]∪[s]
denotes the set union of [c] and [s]. There are two special conditions: the empty
(unsatisfied) condition [] and the true (satisfied) condition [>].

Configuration-based transitions defining the child t(C), descendant t(C+),
next-sibling t(≺), and next-siblings t(≺+) transducers are given in the following.
For all transducers, the input and output alphabet Σ consists of all opening 〈x〉
and closing 〈/x〉 tags and conditions [c], and the stack alphabet Γ consists of
all conditions [c]. Initially, an empty condition [] is pushed on the stack of
each transducer. The configurations of these transducers differ only in the first
transition, which is actually a compaction of several simpler transitions that do
only one stack operation. In transitions 2 and 3, x stands for any node label.

The child transducer t(C) is defined below. The transitions of this transducer
read as follows: (1) if a condition [c] is received, then [c] is pushed on the stack
and nothing is output; (2) if an opening tag 〈x〉 is received, then it is output
followed by the condition from the top of the stack; (3) if a closing tag 〈/x〉 is
received, then it is output and the top condition is popped from the stack.

1. ([c] , γ) ` ([c] | γ, ε)
2. (〈x〉 , [s] | γ) ` ([s] | γ, 〈x〉[s])
3. (〈/x〉, [s] | γ) ` (γ, 〈/x〉)

Lemma 1 (t(C) Correctness). Transducer t(C) implements outC(v1)|v2 .

7

Proof. When receiving a node n annotated with a condition [c], [c] is pushed
on the stack. The following cases can then appear: (1) the closing tag of n is
received, and [c] is popped from the stack, for there are no other child nodes of n
left in the incoming stream; (2) the opening tag of a child node n′ of n is received,
and it is output followed by [c] (hence child nodes n′ are annotated correctly with
[c]). In the latter case another condition [c′] is received afterwards, pushed on
the stack, and used to annotate child nodes of n′. Only when the closing tag of
n′ is received, [c′] is popped and [c] becomes again the top of the stack. At this
time, siblings of n′ can be received and annotated with [c] (the above case 2), or
the closing tag of n is received (the above case 1).

The descendant transducer t(C+) is defined below. The missing transitions
2 and 3 are like for t(C). In the first transition, t(C+) pushes on the stack the
received condition [c] together with the top condition [s]: [c]∪[s]. The difference
to t(C) is that also conditions that annotate the ancestors na of n are used to
annotate child nodes n′ of n, for the nodes n′ are descendants of nodes na.

1. ([c], [s] | γ) ` ([c]∪[s] | [s] | γ, ε)

Lemma 2 (t(C+) Correctness). Transducer t(C+) implements outC+(v1)|v2 .

Proof. When receiving a node n annotated with a condition [c], [c] is pushed
on the stack together with the current top [s]: [c]∪[s]. The following cases can
then appear: (1) the closing tag of n is received, and [c]∪[s] is popped from the
stack, as there are no other descendants of n left in the incoming stream; (2)
the opening tag of a child node n′ of n is received, and it is output followed by
[c]∪[s] (hence descendant nodes n′ are annotated correctly). In the latter case
another condition [c′] is received afterwards, the condition [c′]∪[c]∪[s] is pushed
on the stack and used to annotate child nodes of n′. Only when the closing tag
of n′ is received, [c′]∪[c]∪[s] is popped and [c]∪[s] becomes again the top of the
stack. At this time, siblings of n′ can be received and annotated with [c]∪[s] (the
above case 2), or the closing tag of n is received (the above case 1).

The next-sibling transducer t(≺) is defined below. The missing transitions 2
and 3 are like for t(C). In the first transition, t(≺) replaces the top of the stack [s]
with the received condition [c] and pushes an empty condition []. The condition
[] is then used to annotate child nodes n′ of the received node n annotated with
[c]. When the closing tag of n is received, the condition [] is popped and the
next sibling node of n is annotated with the top condition [c].

1. ([c], [s] | γ) ` ([] | [c] | γ, ε)

The next-siblings transducer t(≺+) is defined below. The missing transitions
2 and 3 are like for t(C). In the first transition, t(≺+) adds to the top of the stack
[s] the received condition [c] that annotated a node n, and pushes a condition
[]. The difference to t(≺) is that the top of the stack [s] is kept together with
the received condition [c]: [c]∪[s]. In this way, conditions that annotated the
preceding siblings of n (like [s]) are used to annotate the following siblings of n.

8

1. ([c], [s] | γ) ` ([] | [c]∪[s] | γ, ε)

Analogous to Lemmas 1 and 2, the t(≺) transducer implements out≺(v1)|v2

and the t(≺+) transducer implements out≺+(v1)|v2 .
The label transducer t(a) for a label a acts like a binding filter: the input

bindings with node labels matched by the transducer parameter a are output,
the other ones are filtered out, i.e., their conditions are replaced with the empty
condition []. The label matching can be here extended to regular expression
matching. It is easy to see that RJQ(v1) :- a(v1)K(β) = outa(πv1 (β))|v1 .

3.2 Processing Path Queries

A path query is a sequence of relations such that for two consecutive relations
there is a unique variable that is the sink of the first and the source of the second
relation. SPEX compiles a path query into a P-net that is a sequence of connected
transducers. A connection between two transducers consists in having the second
transducer processing the output of the first one. The answers computed by a
P-net are the nodes annotated by its last but one transducer. Fig. 2(a) shows the
P-net for the query P (v2) :- v0 C+ v1 ∧ b(v1) ∧ v1 ≺+ v2 ∧ d(v2) from Fig. 1(a)
and Example 1 shows stepwise its processing.

The P-net t(P) = [t(r1), . . . , t(rn)] for a general path query P (vn) :- v0 r1 v1∧
. . .∧vn−1 rn vn is an implementation of outP (v0)|vn = outrn(..(outr1(v0)|v1)..)|vn :
for given input bindings v0, outP returns output bindings vn, such that for every
1 ≤ i ≤ n the relation vi−1 ri vi holds. For a set of bindings β, it follows that:

RJP (vn) :- v0 r1 v1 ∧ . . . ∧ vn−1 rn vnK(β) =

= πvn(SJvn−1 rn vnK(. . . (SJv0 r1 v1K(β)) . . .))

= outrn(. . . (outr2(πv1(SJv0 r1 v1K(β)))|v2) . . .)|vn
= outrn(. . . (outr2(πv1(outr1(πv0(β))|v1))|v2) . . .)|vn
= outrn(. . . (outr1(πv0(β))|v1) . . .)|vn = outP (πv0(β))|vn .

The correctness of a P-net t(P) implementation of outP (v0)|vn , where t(ri)
implements outri(vi−1)|vi , (1 ≤ i ≤ n), follows from the observation that the
output of each transducer from P-net is streamed in the next transducer.

Example 1. Consider the path query P (v2) :- v0 C+ v1∧b(v1)∧v1 ≺+ v2∧d(v2)
from Fig. 1(a), which selects the next-siblings d-nodes of every b-node. The
corresponding P-net is t(P) = [t(C+), t(b), t(≺+), t(d)], as shown in Fig. 2(a).
Table 1 gives a stream fragment in annotated with conditions, the intermediate
and result output streams generated by the transducers in the P-net t(P). Note
that the intermediary output streams are created progressively and not stored.
Thus, following the evaluation process corresponds to reading entire columns
from left to right.

Recall that the stack of each transducer is initialized with the empty condition
[]. The transducers do the following stack and output operations for processing
the first two opening tags and two conditions:

9

in 〈a〉[1] 〈b〉[2] 〈b〉[3] 〈/b〉 〈/b〉 〈d〉[4] 〈/d〉 〈/a〉
outC+ 〈a〉[] 〈b〉[1] 〈b〉[1,2] 〈/b〉 〈/b〉 〈d〉[1] 〈/d〉 〈/a〉
outb 〈a〉[] 〈b〉[1] 〈b〉[1,2] 〈/b〉 〈/b〉 〈d〉[] 〈/d〉 〈/a〉
out≺+ 〈a〉[] 〈b〉[] 〈b〉[] 〈/b〉 〈/b〉 〈d〉[1] 〈/d〉 〈/a〉
outd 〈a〉[] 〈b〉[] 〈b〉[] 〈/b〉 〈/b〉 〈d〉[1] 〈/d〉 〈/a〉

Table 1. Processing Example with P-net

On receiving 〈a〉[1], the first transducer in t(P), i.e., t(C+), outputs 〈a〉 and
its top condition [], and pushes the received condition [1]. The next transducer
t(b) receives 〈a〉[] and sends it further to t(≺+), which outputs 〈a〉 followed by
its top condition [], adds later on the received condition [] to the top condition
[], and pushes an empty condition []. The next transducer t(d) receives then
〈a〉[] and sends it further.

On receiving 〈b〉[2], t(C+) outputs 〈b〉 and its top condition [1], and pushes
[1,2]. Next, t(b) receives 〈b〉[1] and sends it further to t(≺+), which outputs 〈b〉
followed by its top condition [], adds later on the received condition [1] to the
top condition [], and pushes an empty condition []. The next transducer t(d)
receives then 〈b〉[] and sends it further.

3.3 Processing Tree Queries

A tree query is a path query extended with multi-source variables. There is one
path in a tree query that leads from a non-sink variable to the head variable,
called the head path, the other non-head paths are called predicates. SPEX
compiles a tree query into a T-net. Each multi-source variable introduces a
pair of special transducers (and, cd-and), if that variable is source of conjuncted
expressions, or (or,cd-or) for disjuncted expressions. These transducers delimit
the subnetworks corresponding to the expressions having that variable as source.
Fig. 2(b) shows the T-net for the query T (v1) :- v0 C+ v1 ∧ b(v1) ∧ v0 C
v2 ∧ d(v2) from Fig. 1(b).

The answers computed by a T-net are among the nodes annotated by its head.
These nodes are potential answers, as they may depend on a downstream satis-
faction of T-net predicates. The predicate satisfaction is conveyed in the T-net
by conditions that annotate nodes. Until the predicate satisfaction is decided, the
potential answers are buffered by the last transducer out in the T-net. Consider,
e.g., the evaluation of the tree query T (v1) :- v0 C+ v1 ∧ a(v1)∧ v1 C v2∧b(v2).
When encountering in the XML stream an opening tag 〈a〉 marking the begin-
ning of an a-node, it is not yet known whether this node has a b-node child, i.e.,
whether it is an answer or not. Indeed, by definition of XML streams, such a
child can only appear downstream. This might remain unknown until the cor-
responding closing tag 〈/a〉 is processed. At this point, it is impossible for the
a-node to have further b-node children. Thus, the stream fragment correspond-

10

ing to a potential answer has to be buffered as long as it is not known whether
predicates that might apply are satisfied or not, but no longer.

A non-empty condition [c] annotating a node n is replaced by an and (or)
transducer with a new condition [q], where q is the stack size of that transducer.
The transducer also pushes [q] on its stack, and forwards to its condition de-
terminant transducer cd (cd-and or cd-or) the condition mapping [c]→[q]. Each
subnetwork routed at that and (or) transducer receives [q] and when [q] is re-
ceived from all (at least one) ingoing edges of the cd-and (cd-or), [q] is considered
satisfied. Using the condition mapping [c]→[q], the cd transducer forwards [c] to
the cd transducer corresponding to the preceding and (or) transducer that cre-
ated [c], or of the out transducer corresponding to the in transducer. However,
as soon as it is known that [q] can no longer be satisfied, [q] is considered un-
satisfied and the nodes annotated with [q] by the head and buffered by the out
transducer are discarded.

The condition mapping [c]→[q] is discarded when the cd transducer receives
(1) the closing tag of n, or (2) the closing tag of the parent node of n. The
former applies for and/or transducers followed by subnetworks that start with
t(C) or t(C+), as t(C) or t(C+) and their subsequents in the subnetworks can
create output bindings with [q] only within the subtree rooted by the node n
(and hence enclosed within the opening and closing tags of n). The latter applies
for and/or transducers followed by subnetworks that start with t(≺) or t(≺+),
as they can create output bindings with [q] only within the stream fragment
starting with the closing tag of n and ending with the closing tag of the parent
of n. The lifetime of a condition mapping, i.e., the time between its creation and
its discarding, influences the number of condition mappings alive at a time. In
the former above case, there can be at most d condition mappings alive at a
time, where d is the depth of the tree conveyed by the input stream, whereas in
the latter above case, there can be at most d + b condition mappings alive at a
time, where b is the breadth of the tree conveyed by the input stream.

Condition mappings are indispensable for representing condition scopes in the
network’s computation. A network for a query with p multi-source variables has
p (and/or, cd) pairs, hence p condition scopes. Consider the condition mappings
[ci]→[ci+1] (1 ≤ i ≤ p) created by a transducer network with p condition scopes,
where each mapping corresponds to a scope. If the head has annotated nodes
with [ch], then they become answers only when [ch] is satisfied and from each
other scope i (1 ≤ i ≤ p, i 6= h) at least one condition [ci] that is mapped directly
or indirectly to [ch] is also satisfied. As soon as they become answers, they are
output and removed from the buffer.

Let us consider the correctness of T-nets for tree queries with conjunctions.
For tree queries with disjunctions similar treatment can be applied. A tree query
T (vh) :- h(v0, vh)∧qi(vj , vi) with path h(v0, vh), which leads to the head variable
vh via intermediate variables vj (0 ≤ j ≤ h), and predicates qi(vj , vi) (h < i ≤
m) is compiled into a T-net network t(T) = (t(h), t(qi)) with a head P-net t(h)
and predicate P-nets t(qi). The T-net t(b) is an implementation of a function
outb(v0)|vh = {outh(v0)|vh | ∀h < i ≤ m, ∃vi ∈ outqi(vj)|vi , 0 ≤ j ≤ h}: for given

11

input bindings v0, it returns output bindings for vh, such that the path h(v0, vh)
holds and there exists a binding of vi for each qi(vj , vi). It follows that:

RJT (vh) :- h(v0, vh) ∧ qi(vj , vi)K(β) = πvh (SJh(v0, vh)K(β) ∩ SJqi(vj , vi)K(β))

= πvh ({t | t ∈ SJh(v0, vh)K(β), t ∈ SJqi(vj , vi)K(β)})
= {t.vh | t.vh ∈ outh(πv0(β))|vh , ∃t.vi ∈ outqi(πvj (β))|vi} = outT (πv0(β))|vh .

The correctness of a T-net t(T) = (t(h), t(qi)) implementation of outT (v0)|vh ,
where h and qi implement outh(vj)|vh and outqi(v0)|vi (h < i ≤ m,0 ≤ j ≤ h)
follows from the above characterizations of and and cd-and.

3.4 Processing Single-Join DAG Queries

A single-join DAG query consists of several subqueries that share only one vari-
able. SPEX compiles such queries into D-nets. Each multi-sink variable intro-
duces a pair of special transducers (∪, cd-∪), if the variable is the sink of dis-
juncted expressions, or (∩, cd-∩) for conjuncted expressions. Fig. 2(c) shows the
D-net for the query D(v1) :- v0 C+ v1 ∧ b(v1) ∧ v2 C+ v1 ∧ d(v2) from Fig. 1(c).

The transducers ∩/∪ are similar to the and/or transducers. However, as set
operations are defined for k ≥ 2 operands, these transducers have k ingoing
edges and their cd transducers have k + 1 incoming edges, one edge for each
subnetwork implementing an operand and one edge for the subnetwork enclosed.
For each node, a set transducer receives also a condition [ci] (1 ≤ i ≤ k) from
each ingoing edge and possibly creates a mapping [ci]→[q]. The ∩/∪ transducer
creates the new condition [q] only if all (at least one) [ci] conditions are non-
empty. If potential answers are annotated with [q′], then they become answers
only when [q′] is satisfied, one condition that is mapped directly or indirectly
to [q′] from each condition scope is satisfied, and for the ∩/∪ transducer all (at
least one) [ci] conditions are satisfied.

The correctness of D-nets can be proven similarly to P-nets and T-nets.

4 Analytical Complexity

The evaluation of RPQ with SPEX has a polynomial combined complexity in
the stream and the query size, near the optimum [4] for in-memory evaluation
of the XPath fragment included in RPQ. We assume that the tree conveyed
by the XML stream has depth d, breadth b, and size s. We define four RPQ
classes: RPQ1 contains path queries and their conjunctions and disjunctions,
RPQ2 contains queries without closure relations, RPQ3 contains RPQ2 and the
C+ relation, and RPQ4 contains RPQ3 and the ≺+ relation.

Theorem 1. The time Ti and space Si complexities for processing RPQi are:

1. T1 = O(q × s) and S1 = O(q × d).
2. T2 = O(q × s) and S2 = O(q × d+ s).
3. T3 = O(q × d× s) and S3 = O(q × d2 + s).

12

4. T4 = O(q ×max(d, b)× s) and S4 = O(q × d×max(d, b) + s).

Proof. The size of a network for a RPQ query is linear in the size of the query. A
stack can have d entries, for every opening tag brings a condition that is pushed
on the stack, and its corresponding closing tag pops a condition. For evaluating
queries with multi-source variables, i.e., with predicates, the extra space s can be
needed for buffering potential answers. This buffering is independent of SPEX
and in some cases unavoidable. The entire space s is needed only in pathological
cases, e.g., when the entire XML stream is a potential answer that depends on a
condition satisfaction which can be decided only at the end of the XML stream.

(1) In a network for a query without multi-source variables, only the in trans-
ducer creates new conditions, which are in fact satisfied conditions [>]. Hence,
the condition unions done by transducers for closure relations yield always sat-
isfied conditions of constant size. Thus, the entries on any transducer stack have
constant size. The time needed to read/write a tag or condition is constant.

(2) No closure relations in the query means no transducers in the network
to compute unions of conditions and consequently conditions of constant size.
Processing queries with multi-source variables can require extra space s.

(3) The t(C+) transducer computes condition unions. As there can be d
condition mappings created at a time within a condition scope and stored on
stacks, a condition union has maximum size d. The stacks have d entries, hence
the size of a stack can be d2. To read/write a condition can take d time.

(4) The t(≺+) transducer computes condition unions. An and/or can store
b+d condition mappings at a time, if a t(≺+) immediately follows it. Otherwise,
case (3) applies. A condition can have max(d, b) size.

The extra space s that can add to the worst-case space complexity of pro-
cessing queries of RPQi (i ≥ 2) classes with SPEX is not necessary for the
evaluation of queries with multi-source variables that have their predicates al-
ways being evaluated before the head transducer annotates potential answers. In
this case, it is already known whether the conditions used by the head transducer
for annotation are satisfied. E.g., in the evaluation of the query T (v2) :- v0 C+

v1 ∧ b(v1) ∧ v0 ≺+ v2 ∧ d(v2), the predicate b(v1) :- v0 C+ v1 ∧ b(v1) is always
evaluated before the head path h(v2) :- v0 ≺+ v2 ∧ d(v2), because the nodes
bound to v1 are among the descendants of the nodes bound to v0, whereas the
nodes bound to v2 are among the following siblings of the nodes bound to v0

and therefore are encountered later in the stream. The class RPQ5 of queries,
the evaluation of which does not require to buffer stream fragments:

RPQ5 = RPQ1 ∪ {Q(v1) :- f0(v0, x) ∧ f1(x, v1) ∧ fi(x, vi) |
f1(x, v1) = x (≺|≺+) v′1 ∧ f ′1(v′1, v1), fi(x, vi) = x (C|C+) v′i ∧ f ′i(v′i, vi),
f0(v0, x) ∈ RPQ5, f

′
1(v′1, v1) ∈ RPQ5, f

′
i(v
′
i, vi) ∈ RPQ, i ≥ 2}.

13

0

400

800

1200

1600

2000

0 100 200 300 400 500 600 700

tim
e

(s
ec

)

stream size s (MB)

real-life data
synthetic data

(a) Varying stream size s (q = 10,
3 ≤ d ≤ 32)

0

40

80

120

160

200

0 100 200 300 400 500 600 700 800 900 1000

tim
e

(s
ec

)

query size q (relations)

(b) Varying query size q (s = 244 kB,
d = 32)

Fig. 3. Scalability (p∗ = p+ = p≺ = p Y= pY = 0.5)

2
2.2
2.4
2.6
2.8

3
3.2
3.4
3.6

0% 20% 40% 60% 80% 100%

tim
e

(s
ec

)

probability (%)

closure
next

wildcard

(a) Effect of p∗, p+, and p≺

2

3

4

5

6

7

8

0 100 200 300 400 500 600 700 800 900 1000

sp
ac

e
(M

B
)

query size q (relations)

(b) Effect of varying query size q

Fig. 4. If not varied, s = 244 kB, d = 32, q = 10, p∗ = p+ = p≺ = p Y= pY = 0.5

5 Experimental Evaluation

The theoretical results of Section 4 are verified by an extensive experimental
evaluation conducted on a prototype implementation of SPEX in Java (Sun
Hotspot JRE 1.4.1) on a Pentium 1.5 GHz with 500 MB under Linux 2.4.

XML Streams. The effect of varying the stream size s on evaluation time
is considered for two XML stream sets. The first set [7] provides real-life XML
streams, ranging in size from 21 to 21 million elements and in depth from 3 to
36. The second set provides synthetic XML streams with a slightly more com-
plex structure that allows more precise variations in the workload parameters.
The synthetic data is generated from information about the currently running
processes on computer networks and allows the specification of both the size and
the maximum depth of the generated data.

Queries. Only RPQ queries that are “schema-aware” are considered, i.e.,
that express structures compatible with the schema of the XML streams consid-
ered. Their generation has been tuned with the query size q and several probabil-
ities: p≺ and p+ for next-sibling, resp. closure relations, p Yand pY for a branch,
resp. a join, and p∗ for the probability that a variable has a label relation. E.g., a
path query has p Y= pY = 0 and a tree query pY = 0. For each parameter setting,
10–30 queries have been tested , totaling about 1200 queries.

Scalability. Scalability results are only presented for stream and query size.
In all cases, the depth is bounded in a rather small constant (d ≤ 36) and its

14

influence on processing time showed to be considerably smaller than of the stream
and query size. Fig. 3 emphasizes the theoretical results: Query processing time
increases linearly with the stream size as well as with the query size. The effect
is visible in both the real-life and the synthetic data set, with a slightly higher
increase in the synthetic data due to the more complex structure.

Varying the query characteristics. Fig. 4(a) shows an increase of the
evaluation time by a factor of less than 2 when p∗ and p+ increase from 0 to
100%. It also suggests that the evaluation times for ≺ and C are comparable.
Further experiments have shown that the evaluation of tree and DAG queries
operations is slightly more expensive than the evaluation of simple path queries.

The memory usage is almost constant over the full range of the previous
tests. Cf. Fig. 4(b), an increase of the query size q from 1 to 1000 leads to an
increase from 2 to 8 MB of the memory for the network and for its processing.
The memory use is measured by inspecting the properties of the Java virtual
machine (e.g., using Runtime.totalMemory() and Runtime.freeMemory()).

6 Conclusion

This paper gives correctness and complexity results for the SPEX [8] query
evaluator against XML streams. SPEX evaluates XPath-like queries, i.e., path,
tree, and single-join DAG queries, with polynomial time and space complexity.
The complexity results are confirmed by extensive experimental evaluation.

Acknowledgments. We thank the anonymous reviewers and Holger Meuss that
made many helpful suggestions on the penultimate draft.

References

1. M. Altinel and M. J. Franklin. Efficient filtering of XML documents for selective
dissemination of information. In Proc. of VLDB, pages 53–64, 2000.

2. C.-Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi. Efficient filtering of XML
documents with XPath expressions. In Proc. of ICDE, pages 235–244, 2002.

3. Cisco Systems. Cisco IOS netflow, 2000.
http://www.cisco.com/warp/public/cc/pd/iosw/prodlit/iosnf_ds.pdf.

4. G. Gottlob, C. Koch, and R. Pichler. The complexity of XPath query evaluation.
In Proc. of PODS, pages 179–190, 2003.

5. T. J. Green, G. Miklau, M. Onizuka, and D. Suciu. Processing XML streams with
deterministic automata. In Proc. of ICDT, pages 173–189, 2003.

6. S. Madden and M. J. Franklin. Fjording the stream: An architecture for queries
over streaming sensor data. In Proc. of ICDE, pages 555–566, 2002.

7. G. Miklau. XMLData repository, Univ. of Washington, 2003.
http://www.cs.washington.edu/research/xmldatasets.

8. D. Olteanu, T. Furche, and F. Bry. An Efficient Single-Pass Query Evaluator for
XML Data Streams. In Proc. of ACM SAC, pages 627–631, 2004.

9. D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath: Looking forward. In Proc.
of EDBT Workshop XMLDM, pages 109–127, 2002. LNCS 2490.

10. D. Rogers, J. Hunter, and D. Kosovic. The TV-trawler project. J. of Imaging
Systems and Technology, pages 289–296, 2003.

